Not able to upload custom weights for Auto Label

I’m not able to upload my YOLOv11 weights on roboflow for auto label, I’m following the docs and using correct credentials still it is throwing this error :

This model upload failed. A failure usually occurs because of an older, incompatible model version or possibly a new type we don't currently have support for. Please try again with a new version and re-upload the model. If the error persists, reach out and we will be happy to help debug.

Hello @Ashish_IISC!

Thanks for reporting this, I’m Leandro, part of Roboflow team.

I took a look, and it seems the upload is failing during the YOLOv11 model conversion due to the following error:

"Error in main conversion logic: Error(s) in loading state_dict for DetectionModel: Missing key(s) in state_dict: "model.22.cv3.0.0.0.conv.weight", "model.22.cv3.0.0.0.bn.weight", "model.22.cv3.0.0.0.bn.bias", "model.22.cv3.0.0.0.bn.running_mean", "model.22.cv3.0.0.0.bn.running_var", "model.22.cv3.0.0.1.conv.weight", "model.22.cv3.0.0.1.bn.weight", "model.22.cv3.0.0.1.bn.bias", "model.22.cv3.0.0.1.bn.running_mean", "model.22.cv3.0.0.1.bn.running_var", "model.22.cv3.0.1.0.conv.weight", "model.22.cv3.0.1.0.bn.weight", "model.22.cv3.0.1.0.bn.bias", "model.22.cv3.0.1.0.bn.running_mean", "model.22.cv3.0.1.0.bn.running_var", "model.22.cv3.0.1.1.conv.weight", "model.22.cv3.0.1.1.bn.weight", "model.22.cv3.0.1.1.bn.bias", "model.22.cv3.0.1.1.bn.running_mean", "model.22.cv3.0.1.1.bn.running_var", "model.22.cv3.1.0.0.conv.weight", "model.22.cv3.1.0.0.bn.weight", "model.22.cv3.1.0.0.bn.bias", "model.22.cv3.1.0.0.bn.running_mean", "model.22.cv3.1.0.0.bn.running_var", "model.22.cv3.1.0.1.conv.weight", "model.22.cv3.1.0.1.bn.weight", "model.22.cv3.1.0.1.bn.bias", "model.22.cv3.1.0.1.bn.running_mean", "model.22.cv3.1.0.1.bn.running_var", "model.22.cv3.1.1.0.conv.weight", "model.22.cv3.1.1.0.bn.weight", "model.22.cv3.1.1.0.bn.bias", "model.22.cv3.1.1.0.bn.running_mean", "model.22.cv3.1.1.0.bn.running_var", "model.22.cv3.1.1.1.conv.weight", "model.22.cv3.1.1.1.bn.weight", "model.22.cv3.1.1.1.bn.bias", "model.22.cv3.1.1.1.bn.running_mean", "model.22.cv3.1.1.1.bn.running_var", "model.22.cv3.2.0.0.conv.weight", "model.22.cv3.2.0.0.bn.weight", "model.22.cv3.2.0.0.bn.bias", "model.22.cv3.2.0.0.bn.running_mean", "model.22.cv3.2.0.0.bn.running_var", "model.22.cv3.2.0.1.conv.weight", "model.22.cv3.2.0.1.bn.weight", "model.22.cv3.2.0.1.bn.bias", "model.22.cv3.2.0.1.bn.running_mean", "model.22.cv3.2.0.1.bn.running_var", "model.22.cv3.2.1.0.conv.weight", "model.22.cv3.2.1.0.bn.weight", "model.22.cv3.2.1.0.bn.bias", "model.22.cv3.2.1.0.bn.running_mean", "model.22.cv3.2.1.0.bn.running_var", "model.22.cv3.2.1.1.conv.weight", "model.22.cv3.2.1.1.bn.weight", "model.22.cv3.2.1.1.bn.bias", "model.22.cv3.2.1.1.bn.running_mean", "model.22.cv3.2.1.1.bn.running_var". Unexpected key(s) in state_dict: "model.22.cv3.0.0.conv.weight", "model.22.cv3.0.0.bn.weight", "model.22.cv3.0.0.bn.bias", "model.22.cv3.0.0.bn.running_mean", "model.22.cv3.0.0.bn.running_var", "model.22.cv3.0.0.bn.num_batches_tracked", "model.22.cv3.0.1.conv.weight", "model.22.cv3.0.1.bn.weight", "model.22.cv3.0.1.bn.bias", "model.22.cv3.0.1.bn.running_mean", "model.22.cv3.0.1.bn.running_var", "model.22.cv3.0.1.bn.num_batches_tracked", "model.22.cv3.1.0.conv.weight", "model.22.cv3.1.0.bn.weight", "model.22.cv3.1.0.bn.bias", "model.22.cv3.1.0.bn.running_mean", "model.22.cv3.1.0.bn.running_var", "model.22.cv3.1.0.bn.num_batches_tracked", "model.22.cv3.1.1.conv.weight", "model.22.cv3.1.1.bn.weight", "model.22.cv3.1.1.bn.bias", "model.22.cv3.1.1.bn.running_mean", "model.22.cv3.1.1.bn.running_var", "model.22.cv3.1.1.bn.num_batches_tracked", "model.22.cv3.2.0.conv.weight", "model.22.cv3.2.0.bn.weight", "model.22.cv3.2.0.bn.bias", "model.22.cv3.2.0.bn.running_mean", "model.22.cv3.2.0.bn.running_var", "model.22.cv3.2.0.bn.num_batches_tracked", "model.22.cv3.2.1.conv.weight", "model.22.cv3.2.1.bn.weight", "model.22.cv3.2.1.bn.bias", "model.22.cv3.2.1.bn.running_mean", "model.22.cv3.2.1.bn.running_var", "model.22.cv3.2.1.bn.num_batches_tracked". "

This usually indicates that the model was either trained or exported using an incompatible version of the Ultralytics framework. From the structure of the weights, it actually looks more like a YOLOv8 model rather than a YOLOv11 one.

I also noticed you were able to successfully upload a versionless YOLOv8 model earlier. However, at the moment, Auto Label does not support versionless models — that’s likely why you’re running into issues now.

To fix this and enable Auto Label with your model, I recommend creating a new dataset version and uploading the same model weights again, but this time using the -v <version> flag in the CLI to specify the dataset version explicitly.

You can find more details on how to upload versioned models here:
:backhand_index_pointing_right: Upload Custom Weights | Roboflow Docs

Let us know if you hit any issues — happy to help further!