CUDA Out Of Memory when training a DETR Object detection model with compute_metrics

I’m training a DETR object detection model on a custom dataset. I’m following this roboflow article;
How to Train RT-DETR on a Custom Dataset with Transformers

But when I run the Trainer API with custom_metrics , I get the error “CUDA Out of Memory”. I have reduced batch_size from 16 until 1, but the same error of “Out of memory”. Here’s how I’m creating the custom_metrics function

id2label = {id: label for id, label in enumerate(train_ds.classes)}
label2id = {label: id for id, label in enumerate(train_ds.classes)}


@dataclass
class ModelOutput:
    logits: torch.Tensor
    pred_boxes: torch.Tensor

class MAPEvaluator:

    def __init__(self, image_processor, threshold=0.00, id2label=None):
        self.image_processor = image_processor
        self.threshold = threshold
        self.id2label = id2label

    def collect_image_sizes(self, targets):
        """Collect image sizes across the dataset as list of tensors with shape [batch_size, 2]."""
        image_sizes = []
        for batch in targets:
            batch_image_sizes = torch.tensor(np.array([x["size"] for x in batch]))
            image_sizes.append(batch_image_sizes)
        return image_sizes

    def collect_targets(self, targets, image_sizes):
        post_processed_targets = []
        for target_batch, image_size_batch in zip(targets, image_sizes):
            for target, (height, width) in zip(target_batch, image_size_batch):
                boxes = target["boxes"]
                boxes = sv.xcycwh_to_xyxy(boxes)
                boxes = boxes * np.array([width, height, width, height])
                boxes = torch.tensor(boxes)
                labels = torch.tensor(target["class_labels"])
                post_processed_targets.append({"boxes": boxes, "labels": labels})
        return post_processed_targets

    def collect_predictions(self, predictions, image_sizes):
        post_processed_predictions = []
        for batch, target_sizes in zip(predictions, image_sizes):
            batch_logits, batch_boxes = batch[1], batch[2]
            output = ModelOutput(logits=torch.tensor(batch_logits), pred_boxes=torch.tensor(batch_boxes))
            post_processed_output = self.image_processor.post_process_object_detection(
                output, threshold=self.threshold, target_sizes=target_sizes
            )
            post_processed_predictions.extend(post_processed_output)
        return post_processed_predictions

    @torch.no_grad()
    def __call__(self, evaluation_results):

        predictions, targets = evaluation_results.predictions, evaluation_results.label_ids

        image_sizes = self.collect_image_sizes(targets)
        post_processed_targets = self.collect_targets(targets, image_sizes)
        post_processed_predictions = self.collect_predictions(predictions, image_sizes)

        evaluator = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
        evaluator.warn_on_many_detections = False
        evaluator.update(post_processed_predictions, post_processed_targets)

        metrics = evaluator.compute()

        # Replace list of per class metrics with separate metric for each class
        classes = metrics.pop("classes")
        map_per_class = metrics.pop("map_per_class")
        mar_100_per_class = metrics.pop("mar_100_per_class")
        for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):
            class_name = id2label[class_id.item()] if id2label is not None else class_id.item()
            metrics[f"map_{class_name}"] = class_map
            metrics[f"mar_100_{class_name}"] = class_mar

        metrics = {k: round(v.item(), 4) for k, v in metrics.items()}

        return metrics

eval_compute_metrics_fn = MAPEvaluator(image_processor=processor, threshold=0.01, id2label=id2label)

Below is the model training on the custom dataset;

training_args = TrainingArguments(
    output_dir=f"Malaria-finetune",
    report_to="none",
    num_train_epochs=10,
    max_grad_norm=0.1,
    learning_rate=5e-5,
    warmup_steps=300,
    per_device_train_batch_size=1,
    dataloader_num_workers=2,
    metric_for_best_model="eval_map",
    greater_is_better=True,
    load_best_model_at_end=True,
    eval_strategy="epoch",
    save_strategy="epoch",
    save_total_limit=2,
    remove_unused_columns=False,
    eval_do_concat_batches=False,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=pytorch_dataset_train,
    eval_dataset=pytorch_dataset_valid,
    processing_class=processor,
    data_collator=collate_fn,
    compute_metrics=eval_compute_metrics_fn
)
trainer.train()

When I run the trainer, I get the error; “OutOfMemoryError: CUDA out of memory.”

With research, it’s most likely the compute_metrics that’s causing the error. Please help

This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.