here is the output that I am getting
0: 640x640 (no detections), 60.2ms
Speed: 43.5ms preprocess, 60.2ms inference, 1077.6ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 4.7277s, throughput: 0.0 fps
0: 640x640 10 cars, 1 number_plate, 50.5ms
Speed: 3.0ms preprocess, 50.5ms inference, 1707.4ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 1.8277s, throughput: 1.122334455663683 fps
0: 640x640 9 cars, 1 number_plate, 42.4ms
Speed: 3.0ms preprocess, 42.4ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1453s, throughput: 1.6268980477118664 fps
0: 640x640 9 cars, 1 number_plate, 41.9ms
Speed: 3.0ms preprocess, 41.9ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.0733s, throughput: 2.115282919086782 fps
0: 640x640 9 cars, 1 number_plate, 42.3ms
Speed: 3.0ms preprocess, 42.3ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1192s, throughput: 2.5799793601528753 fps
0: 640x640 9 cars, 1 number_plate, 47.5ms
Speed: 3.0ms preprocess, 47.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1224s, throughput: 3.0 fps
0: 640x640 9 cars, 1 number_plate, 44.0ms
Speed: 4.0ms preprocess, 44.0ms inference, 4.2ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.0833s, throughput: 3.4196384953491434 fps
0: 640x640 9 cars, 1 number_plate, 45.0ms
Speed: 3.0ms preprocess, 45.0ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1132s, throughput: 3.7914691943117504 fps
0: 640x640 9 cars, 1 number_plate, 45.5ms
Speed: 3.1ms preprocess, 45.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1376s, throughput: 4.172461752421325 fps
0: 640x640 9 cars, 1 number_plate, 44.0ms
Speed: 4.0ms preprocess, 44.0ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1034s, throughput: 4.506534474964618 fps
0: 640x640 9 cars, 1 number_plate, 44.1ms
Speed: 3.1ms preprocess, 44.1ms inference, 6.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1315s, throughput: 4.820333041178166 fps
0: 640x640 9 cars, 1 number_plate, 46.2ms
Speed: 3.0ms preprocess, 46.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.0944s, throughput: 5.154639175238657 fps
0: 640x640 9 cars, 1 number_plate, 43.1ms
Speed: 3.0ms preprocess, 43.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1143s, throughput: 5.473684210526316 fps
0: 640x640 9 cars, 1 number_plate, 46.5ms
Speed: 4.0ms preprocess, 46.5ms inference, 4.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.1166s, throughput: 5.742411812939782 fps
0: 640x640 9 cars, 1 number_plate, 45.5ms
Speed: 3.0ms preprocess, 45.5ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)
E2E latency inference pipeline: 0.109s, throughput: 6.0 fps
0: 640x640 9 cars, 1 number_plate, 44.3ms
Speed: 4.0ms preprocess, 44.3ms inference, 4.5ms postprocess per image at shape (1, 3, 640, 640)